LISTEN: SAFM interview with Niki Neumann, MD of AFGRI Technology Services, on the vital role of AgriTech in SA and Africa

African Innovation Paradigm

AFGRI Technology Services’ MD, Niki Neumann, is one of the contributors to the first in a series of white papers being produced by Thomson Reuters Labs Cape Town/Matter Innovation/HYBR. The first report of the series focuses on the overall challenges of the African innovation ecosystem and includes a set of recommendations to provide a practical guide of success stories, persistent challenges, and most importantly, lessons learned.   The report, entitled “Fixing the African Innovation ecosystem for the many, not the few”, investigates the effectiveness of existing approaches to support the innovation ecosystem and provides recommendations on how to address specific challenges. It offers an important contribution to the crucial debate about how African corporates, start-ups and ecosystem actors can collaborate more effectively in future for mutual gain and broader societal impact.

View the whitepaper here.

AFGRI Technology Services to showcase AgTech expertise at SA’s leading technology summit in September

29 August 2018, Centurion – AFGRI Technology Services (ATS), part of AFGRI Group Holdings (AGH), is partnering with The SA Innovation Summit, taking place in Cape Town from 12-14 September, where the pioneering agricultural technology company will be participating in sessions focused on how technology can, and is, enabling the agricultural sector across South Africa and the rest of the continent.

ATS’s own MD, Niki Neumann, will be contributing to the Summit – as a panellist in the “Fintech for Farming: The Future of Financial Services for the Sector (Bankable Farmer)” session taking place on 12 September, and as the moderator for the panel, “AGRITECH: Investing for Growth in Food and Agri Tech” taking place on 13 September, which will look at venture capital, corporate venturing and investment support of the sector.

Joining her at the event will be Pieter Wasserfall, MD of the Six33 Group and Founder of PICSA, an affiliate start-up within the AGH investment portfolio that provides employee benefit solutions that holistically address the financial challenges faced by farmworkers in South Africa. They will be joined by a host of other guest speakers and panellists from a broad spectrum of technology-driven companies and organisations, start-ups, and academic institutions being represented at the Summit.

“We believe that enabling a platform for South African entrepreneurs, investors and innovators to connect with the broader AgTech ecosystem will have a positive impact on South Africa. Building the ecosystem will not only benefit our customers and our business, but the industry too. If you enable farming, you enable Africa,” says Neumann.

Neumann and Wasserfall both bring high levels of expertise in the field of AgTech to bear on the debates.

The Summit – an industry-leading annual platform for nurturing, developing and showcasing African innovation, as well as facilitating innovation thought leadership – provides the perfect springboard to start conversations about the power of AgTech, believes Neumann.

“Platforms like these provide a way for us to inspire thinking and provide leadership in this sphere to a range of participants, whether they’re entrepreneurial start-ups or corporates considering how to grow and accelerate innovation within their own companies.”

She adds that AgTech can drastically change the sector as we know it. “We want to build a connected, globally competitive, efficient, inclusive agriculture sector through introducing technology and

innovative solutions. AgTech goes beyond on-farm technology, robotics, IOT and sensing – it’s about looking at the sector holistically and bringing together pieces of the puzzle to solve the challenges of financial inclusion, water scarcity, connectivity, food security, increased population growth, the increasing demand for farmers to increase productivity and outputs to meet ever-growing consumption patterns, climate change, enabling smaller farmers access to markets and developing surrounding conditions to enable farmers, for example infrastructure.

This is the first year that ATS will be joining organisations such as the Human Sciences Research Council (HSRC), The Allan Gray Entrepreneurship Challenge, the Southern Africa Network for Biosciences, and Adams and Adams, amongst others, with the City of Cape Town, to support this much-needed platform for innovators, not only in South Africa, but across the continent.

For more information on the Summit, including the full programme, visit www.innovationsummit.co.za.

AFGRI Technology Services partners with SA’s leading technology summit to accelerate innovation in Africa

21 June 2018, Centurion – AFGRI Technology Services (“ATS”), part of AFGRI Group Holdings, is proud to partner with The SA Innovation Summit, an industry-leading annual platform for nurturing, developing and showcasing African innovation, as well as facilitating innovation thought leadership. The Summit will be taking place in Cape Town from 12-14 September.

This is the first year that ATS will be joining organisations such as the Human Sciences Research Council (HSRC), The Allan Gray Entrepreneurship Challenge, the Southern Africa Network for Biosciences, and Adams and Adams, amongst others, with the City of Cape Town, to support this much-needed platform for innovators, not only in South Africa, but across the continent.

ATS has committed to pioneer the conversation and sponsor the AgTech vertical at the Summit, which will bring together corporates, thought leaders, inventors, entrepreneurs, academia and policy makers to strengthen South Africa’s competitive edge and to inspire sustained economic growth across Africa.

Niki Neumann, the MD of ATS, believes platforms such as these provide a vital springboard for leadership in this space, whether to inspire entrepreneurial start-ups or grow and accelerate organisational innovation culture.

“It is precisely because ATS was born of the desire to advance the development and implementation of AgTech solutions – solutions we believe will help ensure both the future of agriculture and enable food security, not just for Africa, but for the whole world too – that our support of events such as this is vital.

“We believe that enabling a platform for South African entrepreneurs, investors and innovators to connect with the broader AgTech ecosystem will have a positive impact on South Africa. Building the ecosystem will not only benefit our customers and our business, but the industry too. If you enable farming, you enable Africa.”

Neumann adds that AgTech can drastically change the sector as we know it. “We want to build a connected, globally competitive, efficient, inclusive agriculture sector through introducing technology and innovative solutions. AgTech goes beyond on-farm technology, robotics, IOT and sensing – it’s about looking at the sector holistically and bringing together pieces of the puzzle to solve the challenges of financial inclusion, water scarcity, connectivity, food security, increased population growth, the increasing demand for farmers to increase productivity and outputs to meet ever-growing consumption patterns, climate change, enabling smaller farmers access to markets and developing surrounding conditions to enable farmers, for example infrastructure.

“For this reason, we need to think broader, we need to rethink the ordinary. The word is moving faster than we could’ve imagined, there has been no better time to talk about the future of food, agriculture and technology as a single topic – AgTech. At the Summit, we have the unique opportunity to fast-track the conversation.”

Fintech defines new trends in financial services offerings for farmers

By 2020, consumers may not turn to banks to get the financial services they need. We are already seeing other companies invading the space traditionally reserved for financial institutions. The reason? “Fintech” – financial technology – which is innovative new technology and software aiming to compete with traditional methods in the delivery of financial services to the consumer.

 

For those who might not know what Fintech is, it’s simply the use of software solutions for financial transactions – global examples include Google Wallet, Apple Pay, Wonga and a myriad of other solutions that are offered online or via mobile phones. Some examples include M-Pesa, SnapScan and Nomanini, to name but a few. To indicate the scale of Fintech, back in 2014 already, investment in the US had tripled to $9,89 billion, with Europe investing $1,5 billion.

 

The disruption caused by Fintech has changed the banking world as we know it.  The Financial services industry has been in existence since the 14th century and has always stood the test of time. However, recently it has had to adapt to keep up with the technology evolution. This Goliath has no doubt been shaken up by modern technology’s David – the Fintech revolution.

 

For traditional financial institutions, the risk of disruption is real, as Fintech companies use the internet, mobile phones, cloud computing and open-source software to make banking and investing more efficient. These Fintech start-ups offer existing financial services at lower costs and offer new tech-driven solutions, not previously available and driven by traditional banks.  Financial institutions – both legacy and start-ups – are also driving technology-focused solutions such as peer-to-peer payments, crowdfunding, mobile payments and transfers, and on-demand insurance.  Examples here include Avant, Lending Club, Qufenqi, Affirm and SocietyOne.

 

What does Fintech mean for agriculture?

 

In South Africa, Post-demonetisation, digitisation of milk procurement is getting a massive boost in organized segment which represents 20% of India’s dairy industry. Cooperatives and private companies are looking for digital solutions for direct credit to cattle owners’ accounts to ensure uninterrupted supply of milk despite currency shortage. Post-demonetisation, digitisation of milk procurement is getting a massive boost in organized segment which represents 20% of India’s dairy industry. Cooperatives and private companies are looking for digital solutions for direct credit to cattle owners’ accounts to ensure uninterrupted supply of milk despite currency shortage. Post-demonetisation, digitisation of milk procurement is getting a massive boost in organized segment which represents 20% of India’s dairy industry. Cooperatives and private companies are looking for digital solutions for direct credit to cattle owners’ accounts to ensure uninterrupted supply of milk despite currency shortage.PICSA is a ground-breaking organisation whose primary aim is to responsibly protect and assist the low-end, economically active population through the provision of credit solutions.  At the core of their offering is the savings platform, offering members real returns by saving as little as R25 a month. Their comprehensive products scale to cater to every stage of the saving journey, thereby contributing to the financial well-being of employees in the agricultural sector.

 

With the pace of technology developing so quickly, it is difficult to say what the next 10 years will look like.  For agricultural financial services and its customers, it may mean the possibility of loans backed by cryptocurrency –  currencies such as Bitcoin which only exist online – by 2025. What is important though is that AFGRI as a company, the agricultural sector as an industry, and South Africa as country do not get left behind.

 

Sources:

https://www.forbes.com/sites/bernardmarr/2017/02/10/a-complete-beginners-guide-to-fintech-in-2017/#367c7d873340

http://www.huffingtonpost.com/entry/what-is-fintech_us_58a20d80e4b0cd37efcfebaa

http://www.business2community.com/finance/5-fintech-firms-reshaping-lending-financing-01701485#bUsBMMz8YWzzADyH.97

 

 

Digitisation set to transform the agricultural value chain in Africa

Along with many business processes in organisations, value chains are undergoing a digital transformation. In Africa, the digitisation of agricultural value chains is expected to make the greatest impact in the area of financial services, making these more accessible to farmers, especially small-scale and rural farmers. It will also help to connect buyers and sellers more efficiently.

 

To give you some background, generally agriculture value chains consist of the following players, although these can vary depending on the type of crops being produced, as well as the location:

 

  • Input providers supplying raw materials such as seeds, fertilizer and pesticides
  • Farmers who manage the production of the agricultural product
  • Associations and cooperatives who organise many individual small-scale farmers into groups to negotiate better prices with buyers and provide extension services
  • Buyers who purchase the agriculture product and sometimes undertake the processing, packaging and marketing of the final products
  • Customers who ultimately consume the products

 

In reality, agricultural value chains are often quite multifaceted, and perhaps more so in Africa where role-players often perform more than one role. For example, buyers can also be input providers when the farmers they work with don’t have a reliable supply of inputs. In many cases, buyers also supply loans for these inputs. Middlemen can also confuse the issues by buying directly from individual small-scale farmers and then selling in bulk to more established companies.

 

However, the focus of this article is on how digitisation will assist small-scale and rural farmers who currently find it difficult to get access to financial services. There are several successful examples of this throughout Africa: for example, Colombia Coffee Growers Federation in Ghana issued ATM cards to 82% of its outgrowers (farmers who are contracted to produce for a specific buyer), helping it reduce disbursement costs by up to 79% compared to cash, a saving of $15.5 million.

 

In Tanzania, Multiflower, a seed and cuttings exporter, embarked on pilot programme in 2013 where they issued loans totaling $6,000 to 200 farmers and paid $67,000 to 300 farmers via M-Pesa. Apart from affording each farmer an additional and simple method for accessing credit, the switch from cash to digital payment resulted in an average saving of $10.75 in transport costs and 8 hours per payment per farmer. Over the duration of the pilot, participating farmers saved a total of approximately 6,000 hours because they didn’t have to travel to collect their payments.

 

Another group who stand to benefit from digitised value chains are buyers of agricultural products. This will considerably lower the costs of withdrawing, transporting, and distributing payments – either to farmers directly or via associations or cooperatives. This is particularly true in Africa, where agriculture value chains are often characterised by a small number of buyers paying many farmers spread out over a vast geographic are working through a complex network of middlemen and traders.

 

Here an example is MasterCard which worked with its partners to develop and implement a range of financial tools to digitise the agricultural value chain in East Africa: 2KUZE in Kenya, and eKilimo in Tanzania. 2KUZE, which means ‘let’s grow together’ in Swahili, is effectively a digital agricultural marketplace targeting Africa’s small-scale farmers, agents, large-scale buyers and financial service providers; eKilimo means ‘eAgriculture’ in Swahili and serves the same function in Tanzania.

 

Streamlining the value chain in the agricultural sector will undoubtedly impact not just the industry, but the entire economy meaningfully – ultimately enabling small-scale farmers to access formal financial services that they previously may have been excluded from. This will go a long way towards driving financial inclusion and food security.

—-

A value chain is the range of steps and related actors necessary for an agriculture product to move from the farm to the final customers. Value-chain finance includes any or all the financial services that flow to and/or through the chain to address the needs and constraints of its participants in accessing finance or procuring products.

Agtech to bring about the second “Green Revolution”

As the issue of food security takes grip around the world, agricultural technology (Agtech) is set to become one of the most impactful uses of modern technology, in that it is changing how we grow food. Fundamentally, it has introduced the second “Green Revolution”, putting to use real-time data and innovative technology to ensure effective farming practices and improved yields.

 

The post-war transformation of agriculture, known as the first “Green Revolution”, was led by American agronomist Norman Borlaug, who developed high-yielding varieties of cereal grains and the distribution of hybridised seeds, synthetic fertilisers, and pesticides to farmers. Borlaug’s contributions, as well as the widespread buildout of irrigation infrastructure and the adoption of modern management techniques, greatly increased yields without requiring an expansion in agricultural land, saving more than a billion people from starvation. Now, a second revolution, built largely on technologies that comprise precision agriculture, promises to make the farm of the future more productive and efficient.

 

With precision agriculture, farmers and soils work better, not harder. Think about precision agriculture as being ‘site-specific’ and ‘information-specific’, as in the most precise way of informing farming decisions. That is, farmers can take large fields and manage them as if they are a group of small fields through gathering information from the fields in real-time by observation and measurement, then responding to inter and intra-field variability in crops. This reduces the misapplication of inputs and increases crop and farm efficiency.

 

Why is this so important? In South Africa alone, we face a massive challenge to feed our population. In 2009, the population was 49 million and is expected to grow to 82 million in 26 years. Food production must intensify and more than double to feed the expanding population using the same or fewer natural resources. The result, there is shifting trend towards intensified agriculture, which can only be brought about using Agtech. This is a global phenomenon as each country looks at innovative ways to deal with the problem – not only in production, but across the value chain.

 

Agtech innovations include satellite mapping, drones, Internet of Things (IoT) and robotics. In 2014 alone, investment in agricultural technology surpassed investment in Fintech; $2.36 billion and $2.1 billion respectively. The growth potential is monumental particularly because Agtech will seek to find solutions to mitigate against climate change, increasing population growth and land scarcity. An example of this level of investment is with John Deere – the company has recently made an acquisition of an agtech startup, Blue River for $305 million. Reason being that Blue River’s has created technology that uses computer vision and machine learning to help growers reduce the use of herbicides; while conducting analysis on each plant to determine if it is a weed.

 

The eight main categories of Agtech include:

 

  • Farm management software;
  • Precision agriculture and predictive data analytics;
  • Sensors that help farmers to collect data and to monitor crop health, weather and soil quality;
  • Animal data – software and hardware specifically aimed at better understanding livestock, from breeding patterns to genomics;
  • Robotics and drones;
  • Smart irrigation;
  • Next gen farms, where technology is used to provide alternative farming methods to enable farming in locations and settings that previously couldn’t support traditional farming; and marketplaces (technological platforms that connect farmers directly to suppliers or consumers without any middlemen).

 

Some of the most significant technological advances that are already revolutionising the agricultural sector in Africa include:

 

  • Water-saving sensors comprising networks of wireless sensors and smart water management systems;
  • Precision drones used for crop spraying in unmanned helicopters, precise aerial photography, soil and water surveys and spraying and watering assistance;
  • Chemical-free pest control – including systems that can trap, count and monitor pests, systems that trigger the release of EPA-approved pheromones that disrupt pests’ mating cycles, and real-time field monitoring and targeted, automated responses; and
  • Farming automation and management systems including interconnected machinery, machines that can inject fertiliser at precise depths, automated seed-spacing based on soil fertility and machines that measure harvest data in real-time.

 

Technology that increases the efficiency of farms has come a long way since the days when tractors and ploughs were the most important agricultural machines. More importantly though, it’s about food security and feeding the world’s burgeoning population. It’s also about sustaining profitable production – producers need to use the latest technology available, from seed to chemicals and mechanisation to training, including precision agriculture. It’s a case of maintaining a competitive advantage in a competitive global agricultural market; it’s not just a ‘nice-to-have’. And finally, it’s about reducing our impact on the environment too.

 

Sources:

https://soilsmatter.wordpress.com/2015/02/27/what-is-precision-agriculture-and-why-is-it-important/

https://en.wikipedia.org/wiki/Precision_agriculture

http://www.engineeringnews.co.za/article/iot-could-help-increase-agri-productivity-by-70-says-deloitte-report-2016-05-03

http://www.precisionag.com

https://www.afgri.co.za/geoagro/

www.planet.com

https://techcrunch-com.cdn.ampproject.org/c/s/techcrunch.com/2017/09/06/after-scraping-monsanto-deal-deere-agrees-to-buy-precision-farming-startup-blue-river-for-305m/amp/

 

Climate-smart Agriculture: A new approach for a new reality

As the world’s population continues to surge, there are mounting concerns about how agricultural production will cope with feeding everyone. The Food and Agriculture Organisation of the United Nations (FAO) estimates that food production must increase by at least 60% to respond to the demands of the nine billion people that are expected to inhabit the planet by 2050. This has become a food security issue globally.

 

With many of the resources needed for food security already stretched, the challenges are huge – and are being intensified by the fact that the world’s climate is changing fast. For agriculture, change will be significant, as temperatures rise, rainfall patterns change, and pests and diseases find new areas to inhabit or spread to, all of which pose significant new risks to food and farming.

 

There is also a growing recognition of agriculture’s contribution to climate change, and of the means by which farming systems can adapt to cope with the changes, as well as the potential of agriculture to mitigate climate impact. This recognition has led to the concept of ‘climate-smart agriculture’ (CSA).

 

Just what is CSA?

CSA is defined by the FAO as “agriculture that sustainably increases productivity, enhances resilience, reduces/removes greenhouse gas emissions where possible, and enhances achievement of national food security and development goals”.

 

Therefore, CSA is an integrated approach that aims to deliver food security in the face of climate change by:

 

  • Sustainably increasing agricultural productivity
  • Building the resilience of food systems
  • Reducing greenhouse gas emissions from agriculture

 

While there are several other sustainable agricultural models in place already, what is new about CSA is that it includes climate change and risks, which are happening more rapidly and with greater intensity than in the past.

 

CSA is more comprehensive as it strives to adopt a perspective including various other systems at play, such as landscapes, ecosystems and value chains. It also goes beyond new technologies and practices like drought-resistant varieties or precision farming. Identified CSA practices include the following, along with some examples of actions that contribute to CSA:

 

  • Soil management: Nitrogen and other nutrients are essential to increased yields – this can be done through composting manure, precise matching of nutrients with plant needs, or using legumes for natural fixation.
  • Crop production: Crop productivity can be increased through breeding higher-yielding crop varieties, though crop and crop nutrient management, and through choosing crop species that have higher yield potentials under given environmental conditions.
  • Water management: For rain-fed agriculture, improved water management can be done through water harvesting, soil management practices that result in the capture and retention of rainfall, as well as through soil fertility and crop management innovations that enhance crop growth and yield, thus using water more effectively.
  • Livestock management: Sustainable interventions that target improved feed resources directly increase productivity. For cattle, examples include improved grazing management, using improved pasture and agroforestry species, as well as nutritious diet supplements. Similarly, interventions aimed at improving animal health, such as vaccination programmes, will also improve animal productivity.
  • Forestry & Agroforestry: Examples here include planting trees to act as windbreaks to protect adjacent field crops, reduce wind erosion, and store carbon, or as shelter for grazing livestock.
  • Fisheries & Aquaculture: For aquaculture, the emphasis is on intensifying production, improving stocks, making feeding more efficient and reducing losses from disease. More broadly across the sector, efforts should be made in reducing losses and wastes, increasing yields and productivity in fish and aquatic food processing and other areas where value can be added, and enhancing efficiencies in product distribution.
  • Energy management: Agricultural production can be increased by improving energy efficiency, and implementing the use of renewable energy sources.

 

What are the benefits for farmers?

For farmers, weather variability brings both lucky breaks and difficult challenges that must be managed. This is especially true for resource-poor small-scale farmers in developing countries, like many in Africa. CSA gives farmers a framework for achieving increases in agricultural production despite the increasing climate variability being caused by climate change. This helps to secure both individual livelihoods and global food security.

 

CSA is gaining ground in South Africa – it was the topic of a workshop at the PMA Fresh Connections Conference hosted in Cape Town recently, which investigated the needs of South African agriculture. The needs identified for farmers, particularly small-scale farmers, were:

 

  • more resilient seed varieties;
  • the importance of business planning and inclusion of youth in agriculture;
  • market access and logistics; and
  • scaling up or growing a farming enterprise, within an enabling policy environment.

 

The Government is currently working on a national strategic framework on climate smart agriculture for 2018.

 

For more information on innovation in agriculture, contact AFGRI Technology Services on [email protected]

 

Climate Smart Agriculture – Introduction

Climate Smart Agriculture workshop at PMA Conference, Cape Town

Precision Agriculture

You may have heard soft rumblings of the next best thing in agriculture, of the future of agriculture, the new face, new way of doing things? If you have not heard yet, let us be the first to tell you that this is called Precision Agriculture!

Whatever your knowledge about precision agriculture – a little, very little or, if you’re tech-savvy and ahead of the curve, perhaps a lot – let us invite you to read all you need to know about it here.! Enjoy, share and get excited about the future of our industry!

 

Why do we need to produce more precisely?

The postwar transformation of agriculture, known as the first “Green Revolution”, saved more than a billion people from starvation with serious unintended environmental costs. Now, a second revolution, built largely on technologies that comprise precision agriculture amongst others, promises to make the farm of the future more productive and efficient.

Precision agriculture is one of many modern farming practices that make production more efficient. With precision agriculture, farmers and soils work better, not harder.

Think about precision as being ‘site-specific’ and ‘information-specific’, as in the most precise way of informing farming decisions. That is, farmers are able to take large fields and manage them as if they are a group of small fields through gathering information from the fields in real-time by observation and measurement, then responding to inter- and intra-field variability in crops. This reduces the misapplication of inputs and increases crop and farm efficiency.

 

Farmers use precision agriculture practices to apply nutrients, water, seeds, and other agricultural inputs to grow more crops in a wide range of soil environments. Precision ag can help farmers know how much and when to apply these inputs.

In South Africa, the grain sector (a traditional crop for AFGRI) faces undue pressure to produce maize profitably at export parity prices. In an effort to sustain profitable production, producers need to use the latest technology available – from seed to chemicals and mechanisation to training, including precision agriculture. It’s a case of maintaining a competitive advantage in a competitive global agricultural market; it’s not just a ‘nice-to-have’.

 

What is enabling us to produce more precisely?

With swarms of satellites, drones and sensors in our cadre, we are well equipped to engage in precision agriculture, aka satellite farming or site specific crop management (SSCM).

What I mean is that a wave of innovations – from satellite geomapping developed by the US’s NASA to drones used to collect aerial data, to sensors used to collect moisture, temperature and other weather data on the land – provide insight into the health of the land on a real-time basis. Technologies such as advanced sensors and monitoring equipment now enable farmers to monitor crops more precisely and continuously, thereby enabling more strategic decision-making to increase productivity, with a reduced impact on the environment.

 

What can we do now that we could not do before, you ask?

From manipulating the growing environment to producing low-potassium lettuce to attaching sensors to cows to identify potentially sick animals, there is little question that the second green revolution holds the potential for remarkable results. Beyond increasing agricultural productivity, there are proven examples of increasing the nutritional value of food. For example, Fujitsu has produced a raw lettuce with less than 80 percent of the potassium content of traditionally grown lettuce; high potassium is unhealthy for people on dialysis or suffering from chronic kidney disease.

Summary of field-level management optimisation and information gains through precision agriculture:

FIELD-LEVEL OPTIMISATION WEALTH OF INFORMATION
Crop science Precise matching of farming practices closely to crop needs (eg. Fertiliser inputs)
  • Build up a record of their farm;
  • Improve decision-making;
  • Foster greater traceability;
  • Enhance marketing of farm products;
  • Improve lease arrangements;
  • Enhance crop or livestock quality
Environmental protection Precise identification of environmental risk reduction eg. Limiting nitrogen leaching
Economics Precise and efficient practise that will boost competitiveness (eg. Improves management of input usage)

 

 

Key takeaways and tags

Management zones; farming efficiency; precise decisions; site specific crop management; smart farming.

 

About The first “Green Revolution”

was led by Norman Borlaug, an American agronomist who is considered to have “saved more lives than anyone who has ever lived” through his contributions These included the development of high-yielding varieties of cereal grains and the distribution of hybridized seeds, synthetic fertilizers, and pesticides to farmers. Borlaug’s contributions, as well as the widespread buildout of irrigation infrastructure and the adoption of modern management techniques, greatly increased yields without requiring an expansion in agricultural land.

 

References:

https://soilsmatter.wordpress.com/2015/02/27/what-is-precision-agriculture-and-why-is-it-important/

https://en.wikipedia.org/wiki/Precision_agriculture

http://www.engineeringnews.co.za/article/iot-could-help-increase-agri-productivity-by-70-says-deloitte-report-2016-05-03

http://www.precisionag.com

https://www.afgri.co.za/geoagro/

www.planet.com

Vertical Farming: What this new production technology is and what does it mean for AFGRI/Food Security?

Vertical farming: the pros and cons

Vertical farming is set to become a new buzzword and already there are pros and cons.

Simply put, this relatively new production technology allows for more food to be grown throughout the year in smaller spaces, without soil or natural light.

As an alternative farming technique, vertical farming offers the promise of meeting the challenges posed by increasing urbanisation, climate change, the declining availability of arable land and fresh water whilst still providing enough food for the growing global population.

Vertical farming is usually situated in large buildings, using techniques called hydroponics and aeroponics. Hydroponics is a plant growing method without soil, using a nutrient rich liquid feeding the plants. Aeroponics refers to the use of special UV lights and a misting system to grow plants, usually with their roots exposed.

Supporters of vertical farming are eager to point out the many advantages of converting concrete buildings into farms where crops can be grown year-round in a controlled environment. The most obvious one is that you don’t need a multi-hectare farm and the crops are protected from severe weather conditions minimising crops lost to hail, drought and cold snaps. Vertical farms are also more efficient as the crops mature much quicker and all produce are grown organically, with no pesticides and insecticides. Inner city farms also reduce the carbon footprint of transportation and use 95% less water than conventional farming.

Even though vertical farming presents an innovative alternative to ensure food security, there are disadvantages. First and foremost is the initial capital outlay that can vary between R7 million and R8 million depending on location, the building and overall infrastructure. Electricity usage is also higher as the plants require specialised lights. This also means that vertical farming is not entirely environmentally friendly. Whilst great success has been achieved with the vertical growing of most plants, grain variants have proven to be especially tricky to grow under hydroponic circumstances.

At this stage vertical farming is still labour intensive as the technology to propagate the plants are not yet available and workers will need specialised training in the process and technologies.

Sources: Countryfarm Lifestyles, Carte Blanche and Humanosphere

 

BOX:

Global market research company Research and Markets predicts that the global vertical farming market is poised to grow at a compound annual growth rate of around 25.4% over the next decade to reach approximately $12.5 billion by 2025.

 

BOX:

A rooftop garden using hydroponic technology was launched in Kotze Street in Hillbrow in October 2016. The building is owned by the City of Johannesburg and the space was offered to the Kotze Rooftop Garden Co-operative as part of a programme to counter food insecurity.

The garden is made up of two dozen rows of metal tunnels covered with shade cloth, which are raised slightly above the concrete roof.